The Convergence of Symmetric Discretization Models for Nonlinear Schrödinger Equation in Dark Solitons’ Motion

نویسندگان

چکیده

The Schrödinger equation is one of the most basic equations in quantum mechanics. In this paper, we study convergence symmetric discretization models for nonlinear dark solitons’ motion and verify theoretical results through numerical experiments. Via second-order difference, can obtain two popular space-symmetric motion: direct-discrete model Ablowitz–Ladik model. Furthermore, applying midpoint scheme with symmetry to space models, time–space models: Crank–Nicolson method new difference method. Secondly, demonstrate that solutions converge solution equation. Additionally, prove order O(h2+τ2) discrete L2-norm error estimates. Finally, present some experiments show our agree well proven results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation

Article history: Received 13 April 2012 Received in revised form 13 October 2012 Accepted 26 October 2012 Available online 23 November 2012

متن کامل

Stochastic Acceleration of Solitons for the Nonlinear Schrödinger Equation

The effective dynamics of solitons for the generalized nonlinear Schrödinger equation in a random potential is rigorously studied. It is shown that when the external potential varies slowly in space compared to the size of the soliton, the dynamics of the center of the soliton is almost surely described by Hamilton’s equations for a classical particle in the random potential, plus error terms d...

متن کامل

Direct perturbation theory for solitons of the derivative nonlinear Schrödinger equation and the modified nonlinear Schrödinger equation.

A direct perturbation theory for solitons of the derivative nonlinear Schrödinger (DNLS) equation is developed based on a closure of eigenfunctions of the linearized DNLS equation around a one-soliton solution. The slow evolution of soliton parameters and the perturbation-induced radiation are obtained. Under the known simple gaugelike transformation, these results are transformed into those fo...

متن کامل

The Defocusing Nonlinear Schrödinger Equation - From Dark Solitons to Vortices and Vortex Rings

Panayotis G. Kevrekidis Dimitri J. Frantzeskakis Ricardo Carretero-González Bose–Einstein condensation is a phase transition in which a fraction of particles of a boson gas condenses into the same quantum state known as the Bose–Einstein condensate (BEC). The aim of this book is to present a wide array of findings in the realm of BECs and on the nonlinear Schrödinger-type models that arise ther...

متن کامل

the study of bright and surface discrete cavity solitons dynamics in saturable nonlinear media

امروزه سالیتون ها بعنوان امواج جایگزیده ای که تحت شرایط خاص بدون تغییر شکل در محیط منتشر می-شوند، زمینه مطالعات گسترده ای در حوزه اپتیک غیرخطی هستند. در این راستا توجه به پدیده پراش گسسته، که بعنوان عامل پهن شدگی باریکه نوری در آرایه ای از موجبرهای جفت شده، ظاهر می گردد، ضروری است، زیرا سالیتون های گسسته از خنثی شدن پراش گسسته در این سیستم ها بوسیله عوامل غیرخطی بوجود می آیند. گسستگی سیستم عامل...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2023

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym15061229